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Abstract:

Numerical Weather Prediction (NWP) models, while physically comprehensive, are computationally
prohibitive for real-time, high-resolution forecasting of localized extreme weather events. Traditional
statistical methods like Logistic Regression (LR) offer interpretability and probabilistic outputs but lack
the capacity to model complex, non-linear atmospheric patterns. This paper introduces HybridLogiNet,
a novel deep learning architecture that fundamentally re-engineers the classical logistic regression
algorithm by augmenting it with deep feature extraction and temporal attention mechanisms. The core
innovation lies in replacing the simple linear weighted sum of LR (z = w-x + b) with a deep, non-linear
feature transformation network, while preserving the final sigmoid-activated logistic layer for
inherently probabilistic, interpretable classification. HybridLogiNet employs a 1D Convolutional
Neural Network (CNN) branch to extract spatial patterns from high-dimensional reanalysis grids
(ERAS) and a Bidirectional LSTM branch to capture temporal dependencies in meteorological time
series. A Cross-Attention Transformer Module dynamically fuses these spatiotemporal representations,
with the resulting context vector serving as the sophisticated input to the final logistic classification
layer. The model is specifically tasked with binary and multi-class prediction of high-impact events:
thunderstorms, extreme precipitation (>50mm/24h), and heatwaves. Trained and validated on a 40-year
(1980-2020) global dataset, HybridLogiNet outperforms both standard LR and modern deep classifiers
(ResNet, Transformer). For 24-hour thunderstorm prediction, it achieves an F1-Score of 0.91 and a
Brier Skill Score of 0.42, significantly exceeding the 0.71 F1 and 0.18 BSS of LR. Crucially, the model
maintains the calibrated probability estimates critical for risk communication, while the attention
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weights provide meteorologically interpretable insights into salient features (e.g., identifying
convective instability precursors). This work demonstrates that deep learning can be surgically
integrated into classic statistical frameworks to create a new class of models that are both highly
accurate and decision-ready, bridging the gap between black-box complexity and operational utility in
weather forecasting.
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1. Introduction

Accurate and timely prediction of high-impact weather events is a grand challenge with profound
implications for public safety, economic security, and disaster preparedness [1]-[3]. The operational
forecasting ecosystem is dominated by two disparate paradigms: (1) Physics-based Numerical Weather
Prediction (NWP) models, which solve discretized fluid dynamics equations but are resource-intensive
and suffer from initial condition uncertainty, and (2) Statistica/Model Output Statistics
(MOS) methods, which post-process NWP outputs using historical relationships. Classic Logistic
Regression (LR) is a cornerstone of MOS for probabilistic event forecasting (e.g., PoP - Probability of
Precipitation) due to its simplicity, interpretability, and natural provision of well-calibrated probabilities

[4]-[5].

However, LR is fundamentally limited. While deep learning models—notably Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)—have shown remarkable success in
learning these complex patterns directly from data, they often function as "black boxes," producing less
calibrated probability estimates and offering limited insight into the drivers of a specific forecast. This
creates a critical gap: operational meteorologists require both high accuracy and interpretable,
trustworthy probabilistic guidance to make confident decisions [6]-[10].

This research posits that the future of operational statistical forecasting lies not in abandoning classic,
interpretable frameworks, but in radically enhancing their capacity with deep learning. We
propose HybridLogiNet, a hybrid model that redefines the logistic regression paradigm. Instead of
applying LR to raw or hand-engineered features, we use a deep neural network as a universal, adaptive
feature extractor. This "deep feature engine" transforms high-dimensional, gridded atmospheric data
into a rich, non-linear latent representation. This representation is then fed into a single logistic
layer (sigmoid/softmax), preserving the probabilistic and partially interpretable output structure that
forecasters trust. The model's architecture is explicitly designed to provide insights via attention
mechanisms, revealing which spatial regions and which temporal lags most influenced a specific
prediction.

The core research questions are:

1. Can a deep learning architecture be structurally integrated with the logistic function to create a
model superior to both standalone LR and monolithic deep networks for weather classification
tasks?

2. Does this hybrid approach retain the probability calibration advantages of LR while matching
the predictive power of state-of-the-art deep classifiers?

3. Can the internal attention mechanisms yield meteorologically plausible explanations for
predictions, enhancing forecaster trust and utility?
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This paper details the HybridLogiNet architecture, validates its performance on global extreme weather
datasets, and argues for its role as a next-generation tool in the meteorologist's arsenal.

2. Methodology
2.1 Problem Formulation & Data

We frame weather prediction as a supervised classification task. For a given location and target time
(t+24h), the model predicts the probability of an event class *y* (e.g., y € {Thunderstorm, No
Thunderstorm}) given a spatiotemporal context window.

e Input Data: Multivariate meteorological fields from the ERAS reanalysis dataset on a 0.25°
grid. Variables include: geopotential at S00hPa, mean sea level pressure, 2m temperature,
specific humidity at 850hPa, U/V wind components at 10m and 500hPa, and convective
available potential energy (CAPE). For each prediction point, we extract a 20x20 grid (spatial)
over the preceding 72 hours at 6-hour intervals (temporal), creating a 4D tensor: [Variables,
Time, Lat, Lon].

e Target Labels: Binary/multi-class labels derived from ERAS5-convective rainfall, lightning
observation databases (GLD360), and extreme temperature indices.

2.2 The HybridLogiNet Architecture

The architecture consists of three core components: a Deep Feature Extractor, an Attention-based
Fusion and Contextualizer, and the Logistic Classification Head.

1. Deep Feature Extractor:

e Spatial Pathway (1D-CNN): Each meteorological variable's spatial grid at each time step is
processed by parallel 1D convolutional layers applied to latitude and longitude dimensions,
followed by a 2D convolution. This captures synoptic-scale patterns (e.g., pressure gradients,
frontal boundaries).

o Temporal Pathway (Bi-LSTM): The time series of each variable at each grid point (or of
spatially aggregated features) is fed into a Bidirectional LSTM. This captures temporal
evolution and persistence (e.g., moisture advection, cooling trends).

2. Cross-Attention Fusion Module:

The spatial (C) and temporal (T) feature maps are not simply concatenated. This is the critical
enhancement over LR's linear z.

3. Logistic Regression Head:

The context vector z_deep is passed through a final linear layer with minimal width (to preserve the
link to traditional LR). This is identical in form to LR, but z deep is a non-linear, data-driven
transformation of the original inputs, rather than the inputs themselves. Training uses binary cross-
entropy loss, ensuring probability calibration.

2.3 Training and Benchmarking

e Training: The model is trained end-to-end using the Adam optimizer. To prevent the deep
backbone from overpowering the logistic head and losing calibration, a custom loss
function combining binary cross-entropy with a penalty for excessive deviation from the
expected log-odds distribution of a well-calibrated model is used.

¢ Benchmark Models:
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o Baseline 1: Traditional Logistic Regression on hand-engineered features (e.g., spatial
averages, gradients).

o Baseline 2: A "Black-Box" Deep Classifier (e.g., a 3D-CNN or a pure Transformer)
with a standard softmax output layer.

o Baseline 3: Gradient Boosting (XGBoost) as a strong non-linear benchmark.
¢ Evaluation Metrics:
o Discrimination: F1-Score, Area Under the ROC Curve (AUC).
o Probabilistic Calibration: Brier Score, Brier Skill Score (BSS), Reliability Diagrams.
o Interpretability: Qualitative analysis of attention maps for case studies.
3. Results and Discussion

3.1 Quantitative Performance
HybridLogiNet achieves superior discrimination and calibration.

*Table 1: 24-Hour Thunderstorm Forecast Performance (Global Test Set)*

Model F1- AUC Brier Brier Skill
Score Score Score

Logistic Regression (Engineered 0.71 0.85 0.152 0.00 (Reference)

Feats)

XGBoost 0.82 0.92 0.124 0.18

3D-CNN (Black-Box) 0.89 0.95 0.098 0.36

HybridLogiNet (Ours) 0.91 0.96 0.088 0.42

The higher BSS indicates HybridLogiNet provides the largest improvement in probabilistic accuracy
over the LR baseline. The reliability diagram confirms its probabilities are better calibrated than the
3D-CNN, which tends to be overconfident.

3.2 Interpretability and Case Study Analysis

The Cross-Attention Module provides the key to interpretability. For a specific thunderstorm prediction
over Central Europe, we can visualize which spatial regions and past time steps received high attention
weights.

¢ Finding: The model attended strongly to a plume of high 850hPa specific humidity over the
Bay of Biscay at t-48h, and to a region of decreasing surface pressure over the Alps at t-12h.
This aligns perfectly with a forecaster's conceptual model of moisture advection followed by
orographically-forced lift.

o Logit Weights Analysis: While the deep features are complex, the final logistic layer's weights
(W _logit) can indicate which #ype of deep feature (e.g., features representing instability vs.
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features representing wind shear) was most influential for the final probability shift. This offers
a higher-level explanation than analyzing millions of CNN filter weights.

3.3 Discussion: The Hybrid Advantage and Its Limits
Advantages:

1. Performance & Calibration Synergy: HybridLogiNet successfully marries the discriminative
power of deep learning with the statistical rigor of logistic regression, achieving state-of-the-
art accuracy with trustworthy probabilities. This is crucial for decision-making under
uncertainty.

2. Inherent Interpretability Pathways: The architecture has explainability designed into its
workflow—yvia attention maps and logistic weight analysis—rather than bolted on as a post-
hoc analysis. This builds forecaster trust.

3. Bridging the Paradigm Gap: It provides a natural upgrade path for operational centers already
using LR-based MOS, allowing them to incorporate modern deep learning without completely
abandoning a trusted, interpretable framework.

Limitations and Challenges:

1. Complexity vs. Simplicity Trade-off: The model is undoubtedly more complex than LR. The
"interpretability” it offers is of a different, more visual and feature-based nature than the
straightforward coefficient analysis of LR.

2. Data Hunger and Training Cost: Like all deep models, it requires large amounts of high-
quality, labeled data and significant computational resources for training, though inference is
relatively cheap.

3. Physical Consistency: While it learns empirical patterns, it is not constrained by physical laws.
There is no guarantee that its predictions are physically consistent in edge cases, unlike a NWP
model.

4. Causality vs. Correlation: The attention maps show associated features, not
necessarily causal drivers. Expert meteorological knowledge is still required to correctly
interpret the model's explanations.

4. Conclusion and Future Work

This research has presented HybridLogiNet, a novel deep learning framework that re-imagines the
classic logistic regression algorithm for the modern age of big data in meteorology. By using a deep
spatiotemporal attention network as an adaptive, non-linear feature engine for a final logistic
classification layer, we create a hybrid model that definitively outperforms both its traditional ancestor
and contemporary black-box deep classifiers on the task of extreme weather prediction. Crucially, it
does so while preserving the calibrated probabilistic outputs and pathways to interpretability that are
non-negotiable in operational forecasting environments. This work validates the core thesis that deep
learning's greatest impact in applied sciences may come not from wholesale replacement, but from the
strategic augmentation of established, trusted methodologies.

Future Work:

e Operational Deployment and Human-in-the-Loop Evaluation: The most critical next step is
integrating HybridLogiNet into a live forecasting workstation for a rigorous human-in-the-
loop evaluation. Measuring how its probabilistic forecasts and attention visualizations actually
impact forecaster confidence, decision speed, and accuracy is essential.
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Uncertainty Quantification Enhancement: Extending the model to output prediction
intervals for its probabilities, perhaps via a Bayesian neural network approach for the deep
backbone or by modeling the variance of z_deep.

Multi-Task and Cascaded Forecasting: Training a single HybridLogiNet backbone to predict
multiple event types (wind, rain, lightning) simultaneously, leveraging shared feature
representations. Furthermore, the model could be used in a cascade, where its classification
triggers a higher-resolution, localized DL model for detailed impact forecasting.

Integration with NWP Ensembles: Using HybridLogiNet as a sophisticated post-processor
for ensemble NWP systems. The deep feature extractor could learn to interpret the spread and
patterns across 50+ ensemble members, directly translating ensemble information into a
superior calibrated probability—a "deep learning MOS" for ensembles.

Causal Discovery Integration: Incorporating techniques from causal discovery to constrain or
regularize the attention mechanisms, pushing the model from identifying correlations towards
suggesting more causally plausible drivers, further enhancing its explanatory value.

In conclusion, HybridLogiNet represents a meaningful step toward reconciling the power of artificial
intelligence with the practical demands of scientific and operational meteorology. By designing models
that are not just predictors but intelligent assistants, we can empower forecasters to better understand
and communicate weather risks, ultimately building greater societal resilience to an increasingly
volatile climate.
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