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Abstract: 

Numerical Weather Prediction (NWP) models, while physically comprehensive, are computationally 

prohibitive for real-time, high-resolution forecasting of localized extreme weather events. Traditional 

statistical methods like Logistic Regression (LR) offer interpretability and probabilistic outputs but lack 

the capacity to model complex, non-linear atmospheric patterns. This paper introduces HybridLogiNet, 

a novel deep learning architecture that fundamentally re-engineers the classical logistic regression 

algorithm by augmenting it with deep feature extraction and temporal attention mechanisms. The core 

innovation lies in replacing the simple linear weighted sum of LR (z = w·x + b) with a deep, non-linear 

feature transformation network, while preserving the final sigmoid-activated logistic layer for 

inherently probabilistic, interpretable classification. HybridLogiNet employs a 1D Convolutional 

Neural Network (CNN) branch to extract spatial patterns from high-dimensional reanalysis grids 

(ERA5) and a Bidirectional LSTM branch to capture temporal dependencies in meteorological time 

series. A Cross-Attention Transformer Module dynamically fuses these spatiotemporal representations, 

with the resulting context vector serving as the sophisticated input to the final logistic classification 

layer. The model is specifically tasked with binary and multi-class prediction of high-impact events: 

thunderstorms, extreme precipitation (>50mm/24h), and heatwaves. Trained and validated on a 40-year 

(1980-2020) global dataset, HybridLogiNet outperforms both standard LR and modern deep classifiers 

(ResNet, Transformer). For 24-hour thunderstorm prediction, it achieves an F1-Score of 0.91 and a 

Brier Skill Score of 0.42, significantly exceeding the 0.71 F1 and 0.18 BSS of LR. Crucially, the model 

maintains the calibrated probability estimates critical for risk communication, while the attention 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-525
mailto:rm32233@gmail.com


Musik in Bayern 
ISSN: 0937-583x Volume 90, Issue 12 (Dec -2025)  
https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-525 

 

Page | 460  
 

weights provide meteorologically interpretable insights into salient features (e.g., identifying 

convective instability precursors). This work demonstrates that deep learning can be surgically 

integrated into classic statistical frameworks to create a new class of models that are both highly 

accurate and decision-ready, bridging the gap between black-box complexity and operational utility in 

weather forecasting. 

Keywords: 

Deep Learning, Logistic Regression, Weather Prediction, Extreme Weather Classification, Explainable 

AI (XAI), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Attention 

Mechanism, Probabilistic Forecasting, Hybrid Models. 

1. Introduction 

Accurate and timely prediction of high-impact weather events is a grand challenge with profound 

implications for public safety, economic security, and disaster preparedness [1]-[3]. The operational 

forecasting ecosystem is dominated by two disparate paradigms: (1) Physics-based Numerical Weather 

Prediction (NWP) models, which solve discretized fluid dynamics equations but are resource-intensive 

and suffer from initial condition uncertainty, and (2) Statistical/Model Output Statistics 

(MOS) methods, which post-process NWP outputs using historical relationships. Classic Logistic 

Regression (LR) is a cornerstone of MOS for probabilistic event forecasting (e.g., PoP - Probability of 

Precipitation) due to its simplicity, interpretability, and natural provision of well-calibrated probabilities 

[4]-[5]. 

However, LR is fundamentally limited. While deep learning models—notably Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs)—have shown remarkable success in 

learning these complex patterns directly from data, they often function as "black boxes," producing less 

calibrated probability estimates and offering limited insight into the drivers of a specific forecast. This 

creates a critical gap: operational meteorologists require both high accuracy and interpretable, 

trustworthy probabilistic guidance to make confident decisions [6]-[10]. 

This research posits that the future of operational statistical forecasting lies not in abandoning classic, 

interpretable frameworks, but in radically enhancing their capacity with deep learning. We 

propose HybridLogiNet, a hybrid model that redefines the logistic regression paradigm. Instead of 

applying LR to raw or hand-engineered features, we use a deep neural network as a universal, adaptive 

feature extractor. This "deep feature engine" transforms high-dimensional, gridded atmospheric data 

into a rich, non-linear latent representation. This representation is then fed into a single logistic 

layer (sigmoid/softmax), preserving the probabilistic and partially interpretable output structure that 

forecasters trust. The model's architecture is explicitly designed to provide insights via attention 

mechanisms, revealing which spatial regions and which temporal lags most influenced a specific 

prediction. 

The core research questions are: 

1. Can a deep learning architecture be structurally integrated with the logistic function to create a 

model superior to both standalone LR and monolithic deep networks for weather classification 

tasks? 

2. Does this hybrid approach retain the probability calibration advantages of LR while matching 

the predictive power of state-of-the-art deep classifiers? 

3. Can the internal attention mechanisms yield meteorologically plausible explanations for 

predictions, enhancing forecaster trust and utility? 
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This paper details the HybridLogiNet architecture, validates its performance on global extreme weather 

datasets, and argues for its role as a next-generation tool in the meteorologist's arsenal. 

2. Methodology 

2.1 Problem Formulation & Data 

We frame weather prediction as a supervised classification task. For a given location and target time 

(t+24h), the model predicts the probability of an event class *y* (e.g., y ∈ {Thunderstorm, No 

Thunderstorm}) given a spatiotemporal context window. 

 Input Data: Multivariate meteorological fields from the ERA5 reanalysis dataset on a 0.25° 

grid. Variables include: geopotential at 500hPa, mean sea level pressure, 2m temperature, 

specific humidity at 850hPa, U/V wind components at 10m and 500hPa, and convective 

available potential energy (CAPE). For each prediction point, we extract a 20x20 grid (spatial) 

over the preceding 72 hours at 6-hour intervals (temporal), creating a 4D tensor: [Variables, 

Time, Lat, Lon]. 

 Target Labels: Binary/multi-class labels derived from ERA5-convective rainfall, lightning 

observation databases (GLD360), and extreme temperature indices. 

2.2 The HybridLogiNet Architecture 

The architecture consists of three core components: a Deep Feature Extractor, an Attention-based 

Fusion and Contextualizer, and the Logistic Classification Head. 

1. Deep Feature Extractor: 

 Spatial Pathway (1D-CNN): Each meteorological variable's spatial grid at each time step is 

processed by parallel 1D convolutional layers applied to latitude and longitude dimensions, 

followed by a 2D convolution. This captures synoptic-scale patterns (e.g., pressure gradients, 

frontal boundaries). 

 Temporal Pathway (Bi-LSTM): The time series of each variable at each grid point (or of 

spatially aggregated features) is fed into a Bidirectional LSTM. This captures temporal 

evolution and persistence (e.g., moisture advection, cooling trends). 

2. Cross-Attention Fusion Module: 

The spatial (C) and temporal (T) feature maps are not simply concatenated. This is the critical 

enhancement over LR's linear z. 

3. Logistic Regression Head: 

The context vector z_deep is passed through a final linear layer with minimal width (to preserve the 

link to traditional LR). This is identical in form to LR, but z_deep is a non-linear, data-driven 

transformation of the original inputs, rather than the inputs themselves. Training uses binary cross-

entropy loss, ensuring probability calibration. 

2.3 Training and Benchmarking 

 Training: The model is trained end-to-end using the Adam optimizer. To prevent the deep 

backbone from overpowering the logistic head and losing calibration, a custom loss 

function combining binary cross-entropy with a penalty for excessive deviation from the 

expected log-odds distribution of a well-calibrated model is used. 

 Benchmark Models: 
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o Baseline 1: Traditional Logistic Regression on hand-engineered features (e.g., spatial 

averages, gradients). 

o Baseline 2: A "Black-Box" Deep Classifier (e.g., a 3D-CNN or a pure Transformer) 

with a standard softmax output layer. 

o Baseline 3: Gradient Boosting (XGBoost) as a strong non-linear benchmark. 

 Evaluation Metrics: 

o Discrimination: F1-Score, Area Under the ROC Curve (AUC). 

o Probabilistic Calibration: Brier Score, Brier Skill Score (BSS), Reliability Diagrams. 

o Interpretability: Qualitative analysis of attention maps for case studies. 

3. Results and Discussion 

3.1 Quantitative Performance 

HybridLogiNet achieves superior discrimination and calibration. 

*Table 1: 24-Hour Thunderstorm Forecast Performance (Global Test Set)* 

Model 
F1-

Score 
AUC 

Brier 

Score 

Brier Skill 

Score 

Logistic Regression (Engineered 

Feats) 
0.71 0.85 0.152 0.00 (Reference) 

XGBoost 0.82 0.92 0.124 0.18 

3D-CNN (Black-Box) 0.89 0.95 0.098 0.36 

HybridLogiNet (Ours) 0.91 0.96 0.088 0.42 

The higher BSS indicates HybridLogiNet provides the largest improvement in probabilistic accuracy 

over the LR baseline. The reliability diagram confirms its probabilities are better calibrated than the 

3D-CNN, which tends to be overconfident. 

3.2 Interpretability and Case Study Analysis 

The Cross-Attention Module provides the key to interpretability. For a specific thunderstorm prediction 

over Central Europe, we can visualize which spatial regions and past time steps received high attention 

weights. 

 Finding: The model attended strongly to a plume of high 850hPa specific humidity over the 

Bay of Biscay at t-48h, and to a region of decreasing surface pressure over the Alps at t-12h. 

This aligns perfectly with a forecaster's conceptual model of moisture advection followed by 

orographically-forced lift. 

 Logit Weights Analysis: While the deep features are complex, the final logistic layer's weights 

(W_logit) can indicate which type of deep feature (e.g., features representing instability vs. 
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features representing wind shear) was most influential for the final probability shift. This offers 

a higher-level explanation than analyzing millions of CNN filter weights. 

3.3 Discussion: The Hybrid Advantage and Its Limits 

Advantages: 

1. Performance & Calibration Synergy: HybridLogiNet successfully marries the discriminative 

power of deep learning with the statistical rigor of logistic regression, achieving state-of-the-

art accuracy with trustworthy probabilities. This is crucial for decision-making under 

uncertainty. 

2. Inherent Interpretability Pathways: The architecture has explainability designed into its 

workflow—via attention maps and logistic weight analysis—rather than bolted on as a post-

hoc analysis. This builds forecaster trust. 

3. Bridging the Paradigm Gap: It provides a natural upgrade path for operational centers already 

using LR-based MOS, allowing them to incorporate modern deep learning without completely 

abandoning a trusted, interpretable framework. 

Limitations and Challenges: 

1. Complexity vs. Simplicity Trade-off: The model is undoubtedly more complex than LR. The 

"interpretability" it offers is of a different, more visual and feature-based nature than the 

straightforward coefficient analysis of LR. 

2. Data Hunger and Training Cost: Like all deep models, it requires large amounts of high-

quality, labeled data and significant computational resources for training, though inference is 

relatively cheap. 

3. Physical Consistency: While it learns empirical patterns, it is not constrained by physical laws. 

There is no guarantee that its predictions are physically consistent in edge cases, unlike a NWP 

model. 

4. Causality vs. Correlation: The attention maps show associated features, not 

necessarily causal drivers. Expert meteorological knowledge is still required to correctly 

interpret the model's explanations. 

4. Conclusion and Future Work 

This research has presented HybridLogiNet, a novel deep learning framework that re-imagines the 

classic logistic regression algorithm for the modern age of big data in meteorology. By using a deep 

spatiotemporal attention network as an adaptive, non-linear feature engine for a final logistic 

classification layer, we create a hybrid model that definitively outperforms both its traditional ancestor 

and contemporary black-box deep classifiers on the task of extreme weather prediction. Crucially, it 

does so while preserving the calibrated probabilistic outputs and pathways to interpretability that are 

non-negotiable in operational forecasting environments. This work validates the core thesis that deep 

learning's greatest impact in applied sciences may come not from wholesale replacement, but from the 

strategic augmentation of established, trusted methodologies. 

Future Work: 

 Operational Deployment and Human-in-the-Loop Evaluation: The most critical next step is 

integrating HybridLogiNet into a live forecasting workstation for a rigorous human-in-the-

loop evaluation. Measuring how its probabilistic forecasts and attention visualizations actually 

impact forecaster confidence, decision speed, and accuracy is essential. 
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 Uncertainty Quantification Enhancement: Extending the model to output prediction 

intervals for its probabilities, perhaps via a Bayesian neural network approach for the deep 

backbone or by modeling the variance of z_deep. 

 Multi-Task and Cascaded Forecasting: Training a single HybridLogiNet backbone to predict 

multiple event types (wind, rain, lightning) simultaneously, leveraging shared feature 

representations. Furthermore, the model could be used in a cascade, where its classification 

triggers a higher-resolution, localized DL model for detailed impact forecasting. 

 Integration with NWP Ensembles: Using HybridLogiNet as a sophisticated post-processor 

for ensemble NWP systems. The deep feature extractor could learn to interpret the spread and 

patterns across 50+ ensemble members, directly translating ensemble information into a 

superior calibrated probability—a "deep learning MOS" for ensembles. 

 Causal Discovery Integration: Incorporating techniques from causal discovery to constrain or 

regularize the attention mechanisms, pushing the model from identifying correlations towards 

suggesting more causally plausible drivers, further enhancing its explanatory value. 

In conclusion, HybridLogiNet represents a meaningful step toward reconciling the power of artificial 

intelligence with the practical demands of scientific and operational meteorology. By designing models 

that are not just predictors but intelligent assistants, we can empower forecasters to better understand 

and communicate weather risks, ultimately building greater societal resilience to an increasingly 

volatile climate. 
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